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PREFACE

This is one of a series of papers describing the
design, implementation, and use of the MIND system. The

design goals for the MIND system are responsive to the

increasingly urgent need for a means of fast and accurate

information transactions between relatively senior command,

control, and policymaking personnel, on the oue hand, and

very large, heterogeneous, loosely--formatted information

banks on the other. The system is an unobtrusive servant;

it understands, acts upon, and replies with, English sen-

tences; its users will require no special training. It is

thus a prototype for a class of systems that are well

suited to the critical task of unifying, controlling, and

exploiting the massive and often chaotic flow of informa-

tion that centers upon the senior command levels of the

Air Force and other services, especially in emergency

situations.

The MIND system consists of nested and chained

modules of high level programming language statements, and

it is therefore relatively easy to modify, either for

improvement or for adaptation to specialized applications.*

'Management of Information through Natural Discourse.



SUMMARY

This paper gives a detailed description of the

way in which the main fact file of the MIND system is

organized. The format of each type of record is given

in the form of a declaration in the PL/l programming

language. A method is described for organizing long

lists of items so that any desired entry on the list can

be retrieved with a minimum of accesses (usually one) to

the disk.

A set of computer procedures is described which

can be incorporated into any program that has cause to

refer to the file. These make it easy to store and

xetrieve information and to relieve the programmer of

the necessity of bearing all the details of the file

representation constantly in mind.
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THE MIND SYSTEM: THE STRUCTURE OF THE SEMANTIC FILE

1. INTRODUCTION

This is one of a series of reports on the design of

the MIND information-management system presently under

way in the RAND Linguistics Project. An information-

management program, as we understand it, should be capable

of reading text in an ordinary language, say English, and

responding to questions on the information that it contains

in the same language. Such a program must clearly contain

numerous routines for extracting information from ordinary

text and for restating it in some canonical format. There

must be routines for inserting new information in the

central file of facts, and for retrieving the information

needed to construct answers to particular questions. In

this paper we are concerned with the central file of facts

itself and with the ways in which the program will be able

to organize data in it.

In Section 2 we shall be concerned with the ways

in which individual items of information will be physically

arranged on IBM 2314 disks. The reader will be assumed to

have some knowledge of the grosser properties of this kind

of storage device.

.... anagement of Information through Natural Discourse
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Section 3 describes a set of procedures provided

in the MIND system for manipulating the file-entering new

and retrieving old information. Eight of these procedures

are used by the program that constitutes the semantic com-

ponent of the MIND system; the remainder perform more

elementary functions and are intended mainly for use by

the first eight. The chart in section 4 illustrates the

structure of the complete file-manipulation package show-

ing which procedures make use of which others.

All the procedures mentioned here are written in

the PL/l programming language. Some familiarity with

PL/l will be useful, though not essential, for understand--;-

ing what follows.

The file itself consists of a complex network of

items that can enter into a number of different relations.

If two items, a and b, enter into a relation R, then the

record representing a will contain, among other things,

the address of b labeled with the name of the relation, R.

The record corresponding to b will contain the address of

a labeled with the name of the converse relation, R'.

Given any item in the file, it is therefore possible to

find the location of any other item to which it is related.

It is a property of many of the relations we are

concerned with that if a pair of items, a and b, are in

the relation, then there is no c different from b
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such that a and c are in the relation. Notice that this

property can hold for a relation without holding for its

converse. We shall refer to a relation for which the

property holds as a singular relation; all others are

multiple relations. As we shall see, there is good reason

for providing slightly different physical representations

for the two kinds of relation.

The main aim of the design set out in this paper

has been to provide a file structure that will make it as

easy as possible to search for particular items, items

that stand in specified relationships to other items, to

collect together sets of items that share specified prop-

perties, to perform the usual operations of set theory

upon such sets, and to do all these things with few refer-

ences to the disk so that the amount of time required

will not become unreasonably great.

The file consists, as we have said, of a collection

of items which can enter into relations of various kinds.

An item will be represented in the file by a set of one

or more blocks. Blocks are of two kinds. A label block

consists of a list, each entry of which contains the name

of a relation and the address of some other block in the

file. If the relation named is singular, then the entry

contains the address of the label block corresponding to

an item that stands in the specified relationship to the

present one. If the relation is multiple, then the Ecntry
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contains the address of a link block, and the link block

contains the addresses of the other itemq related to the

present one in the way specified.

Figure I shows an example of how these different

kinds of blocks might be used. "Grass" and "green" are

connected through a relation called "color". The label

block for "grass" therefore contains an entry labeled

"color" and the address of the "green" label block. Since

an object or substance only has one color, the "color"

relation is singular. However, since various objects and

substances can have the same color, the converse of the

"color" relation is multiple. The name of a giver: rela-

tion cannot appear more than once in a label block. The

entry in the "green" label block corresponding to the

relationship "converse color" therefore points to a link

block containing the addresses of all green items in the

file. This is intended simply to illustrate the uay in

which relations are stored in the file and not to show

how the system would translate the English sentence "Grass

is green." For reasons beyond the scope of this paper,

color would probably be represented by a label block and

not by a relation. The translation of the sentence would

be considerably more complex.
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Grass
I Label block

Color

Link block

Label
block

Converse
Color

Fig.1-The internal representation of a relation and its converse.
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2. FILE STRUCTURE

2.1. Data Tracks

Physically, the central file is a regional data set

on disk which consists of a number of records. For reasons

of operating efficiency a disk track is treated as a

logical record. The following PL/I declaration shows the

structure of a data track.

DCL I TRACK BASED(QTK),

2 LABELDRT(254) BIT(13),

2 LINKDRT(254) BIT(13),

2 AVLABEL BIT(13),

2 AVLINK BIT(13),

2 COLLECT BIT(IO),

2 LBCOUNT BIT(8),

2 LKCOUNT BIT(8),

2 BLOCKS(6462) CHAR(l);

Each data track contains (1) two directories specifying the

addresses of the label blocks and link blocks in the track,

(2) two available space pointers (AVLABEL and AVLINK) giving

the addresses of the first location available for label

and link blocks respectively, (3) an accumulator(COLLECT)

which keeps track of the number of items deleted from the

track, and controls the operation of garbage collection,

(4) two counters(LBCOUNT and LKCOUNT) which specify the

block numbers of the first available label block and link
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block respectively, and (5) the main body of the track,

which takes the form cf an array of characters (BLOCKS)

in which label blocks and link blocks are situated.

2.1.1 Label Blocks The detailed structure of a

label block is shown in the following PL/1 declaration:

DCL 1 LABEL BASED(Q),

2 LENGTH BIT(8),

2 CONTINUE BIT(8),

2 LINKS(500),

3 NAME BIT(7),

3 MULTIPLE BIT(l),

3 ITEMAD,

4 DUMMY BIT(l),

4 MEASURE BIT(8),

4 LINKAD,

5 TRACK BIT(15),

5 OFFSET BIT(8);

A label block may contain a maximum of 500 named links.

The first 8-bit field(LENGTH) gives the number of named

links in the block. The 8-bit field(CONTINUE) is provided

in the block structure to refer to a continuation block on

the same data track. If a continuation block has to be

put on a different track, this field contains the value

255('11111111'B) and a different mechanism (to be described

in Section 2.2) is used to locate the continuation block.
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Each names link contains (1) a 7-1-it field for the

name of a relation, (2) one bit(MULTIPLL) to show whether

the link points to a label block or a link block, (3) an

8-bit field(MEASURE) which contains a measure. (See below)

There is one unused bit labeled DUMMY. (4) a 15-bit

field(TRACK) which contains the address of a track in which

the referred block is to be found, and (5) an 8-bit off-

set(OFFSET) giving the position of the block in that track.

4 The links in label blocks are sorted based on the value in

the first 7-bit field. If the bit(MULTIPLE) is zero, the

link points to a label block, i.e. the address of an item

in the file. Otherwise the link points to a link block.

In the latter case, the relation has to be multiple.

2.1.2 Link Blocks. The structure of a link block

is as follows:

DCL 1 LINK BASED(Qi),

2 LENGTH BIT(8),

2 CONTINUE BIT(8),

2 LINKS(500),

3 DUMMY BIT(l),

3 MEASURE BIT(8),

3 LINKAD,

4 TRACK BIT(15),

4 OFFSET BIT(8);
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A link block may contain a maximum of 500 links. An 8-bit

field gives the length, i.e. the number of links that the

block contains. A second 8-bit field may contain, as in

the case of the label block, the reference to another link

Each link consists of an 8-bit measure, one unused bit,

and a reference to a label block (the address of an item)

in the form of a 15-bit track address and an 8-bit offset.

item) in form of a 15-bit track address and an 8-bit offset.

The links in a list of link blocks are arranged in

descending order according to internal 31-bit values

(8-bit measure, 15-bit track number and 8-bit offset).

The value of the 8-bit measure will be determined in such

a way that those links which are most likely to be used

would appear in the earlier portion of the list. One way

to do this is to give a higher measure to blocks repre-

senting more general facts and a lower measure to more

specific facts. The generality of a p'-oposition might be

measured by counting the number of quantifiers it contains.

2.2. Continuation Blocks

2.2.1. Overall Strategy. The file is a complex

network of label and link blocks. From time to time it

may be necessary to add new entries to an existing label

or link block which, in general, belongs to a list of

blocks. The s,,p,..em can store the new entries in four

possible ways. First, it can store the new entries in an
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existing block if there is room for them. Second, the new

entries may be stored in the block before or after the

current block in the list. Third, if there is no space

available in the adjacent blocks, the system may obtain a

new block from the space available in the current track to

accommodate the new entry, and insert it in the list. The

number of spaces in each new label or link block will

always be some definite amount which will be variable in

the light c.'. experience. Tentatively, the figure is set

at 4 for both label and link blocks. If a new block is

established with only two links, then space for two

additional entries in the block will remain unused. How-

ever, if two additional entries have to be added to the

block at some later time, the cost of doing so will be

relatively small. Fourth, the system can increase the

block size of an existing block to make room for new entries.

It is clearly desirable to increase the size of a

particular block rather than to establish a new block as

a continuation of the original one. One reason is that

this will save the cost of establishing a new block, i.e.

the space occupiee by the continuation pointer and the

length of a block. Another, and more important, reason

is that, since an 8-bit offset is used to address blocks

in a data track, the system can only establish a maximum

of 254 label blocks and 254 link blocks. Increasing the

block size would, therefore, allow the system to use more



space in a track. However, we must consider the cost of

rearranging the material on the original track to obtain

space which is physically consecutive with the original

block.

Two parameters of the system, variable in the light

of experience, are used to determine whether a continuation

block will be established on the same track as the block

that it' continues, or whether the material on the track

will be rearranged so that the original block can be made

larger. Let us assume that label blocks are established

at one end of the space on the track and link blocks at

the other so that the space available for new blocks is

somewhere in the middle. The amount of labor involved in

increasing the size of an existing block depends on the

number of blocks intervening between it and the available

space in the center of the track. If this number exceeds

a particular value established in advance, then a continu-

ation block will be established. Otherwise, the current

block will be extended and the blocks intervening between

it and the available space in the center of the track will

be moved to make room. The advantage of establishing

label and link blocks at opposite ends of the track lies

precisely in the fact that the expected amount of material

intervening between a given block and the space available

for new blocks is greatly reduced.
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The value established in advance will be different

for the two kinds of blocks so that the policy governing

the allocation of new space also regulates the proportion

of the space in any given track made available to label

and link blocks because, in this way, it is possible to

increase the likelihood that the link blocks corresponding

to a given label block will be on the same track and,

therefore, to reduce the time expected to access all the

information related to a given item.

It is obviously desirable that the removal to other

positions in a track of the intervening blocks between a

given block and the available space should not entail

changes to references to this block from other places in

the file. Each track on the disk will therefore contain

a pair of directories with 254 13-bit entries each. One

directory is used to refer to all the link blocks in the

track, and the other for label blocks. An offset refers

directly to a position in one of these directories and

the entry at that position poinrcs to the block. It is the

use of these directories that makes it possible to refer

to the position of the given block within a track with

only 8 bits. 13 bits makes it possible to refer to 8,192

different actual locations in the track which is more than

adequate since each track on the IBM 2314 disk pack con-

tains 7,294 addressable locations that can be used for

data.
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From time to time, blocks may be deleted from the

file, thus producing pockets of unused space at unexpected

places on a track. When the available space in the center

of the track is used up, the first move is therefore to

carry out the procedure that has come to be known as

garbage collection. If blocks in the track have been

deleted (the 10-bit field COLLECT specifies the number of

deletions made), then the material on the track is rearranged

so as to bring the available space toward the center of the

track, between that occupied by the label and the link

blocks. Only when no further space can be reclaimed in

this way is a new track brought into service. As a result

of deletions, space may become available on a track which

was previously completely occupied. Blocks on that track

that have continuation blocks on some other track make

first claim on that space. Whenever convenient, continua-

tiin blocks are moved onto the track that contains the

blocks they continue so that they can be referred to more

cheaply whenever the original block is referred to. The

opportunity to perform a maneuver of this kin6 cheaply

can be expected to occur fairly often because, if operations

on the file require reference to a particular block, then

they will typically als.) require reference to its continu-

ation blocks. The information on the tracks containing

the two kinds of blocks can therefore be expected to be

in the rapid access store of the computer at the same
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time in the normal course of events. What ts required is,

therefore, that the program should be on the lookout for

this situation and that it should move continuation blocks

onto the same track as the block they continue whenever

the two tracks on which they currently reside happen to

be in the computer together.

Even if both tracks are available at the same time,

it is probably desirable to move a block from one track

to another only when a certain minimum amount of space,

possibly more than that required for the block to be moved,

is available on the track. If the block were moved when-

ever there was just sufficient space to accommodate it,

then there is every reason to suppose that the number of

links in that block would shortly be increased so that a

new continuation block would again have to be established

on a different track. In this case, little would have

been gained in making the move.

2.2.2. The Track Continuation Directory. Even

given the strategy of moving continuations back to the

original track just described, lists of label blocks or

link blocks may at times extend from one track to several

other tracks. Information concerning the blocks that

continue, and the positions of the continuation blocks,

needs to be recorded. One way to do this is to store

this information in the same track as the lists of label

or link blocks that are continued. However, there is a
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serious drawback to doing so, namely that it may be neces-

sary to read many tracks from the disk into Ecore storage

just to find the position of the desired continuation block.

It is clearly desirable to avoid all unnecessary disk

accesses and to go directly to the track where a link should

be or has been stored. A directory is therefore established

which contains continuation information for all tracks in

the file. When storing or retrieving a piece of information

in the file, the system first refers to this directory to

S...determine the track in which the in forma tion should be . To

avoid ambiguity, we shall, in the following discussion,

call the tracks which are occupied by the directory the

director' tracks and those which contain link and label

blocks the dAta tracks.

Each entry of the track continuation directory con-

tains the continuation information for one data track in

the file. The track continuation information in an entry

is stored in a list of fixed-length blocks. The following

PL/l declaration shows the structure of the directory track.

DCL 1 TKCONTINUE BASED(R),

2 TBLOCKS(68),

3 NEXTBK BIT(8),

3 ELEMENTS(12),

4 INFORl,

5 OROFFSET BIT(8),

5 RELATION BIT(7),

4 LAST,
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5 DUMMY BIT(1),

5 MEASURE BIT(8),

5 TERM,

6 LASTTK# BIT(15),

6 LASTOFFSET BIT(8),

4 INOFR2,

5 CONTRACK# BIT(15),

5 CONOFFSET BIT(8),

2 AVL,

3 AVLPOINTER BIN FIXED(15),

3 AVLCOUNT BIN FIXED (15),

2 CONTINUE,

3 TK# BIT(15),

3 OFFSET BIT(8);

A directory track contains 68 fixed-length blocks, each of

which contains the following information: the first 8-bit

field refers to a continuation block in the same track, if

there is one; otherwise all eight bits are set to zero.

It is followed by 12 elemenlts. All elements in a block

and its continuation blocks are ordered according to the

internal representation (47-bit value) of the substructures

INFORl and LAST. Each element contains information concern-

ing the starting point of a list of label or link blocks

in a track, say X, which has continuations in a track Y,

and also contains information concerning the position of
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the block in track Y to which the list continues.

If the data in an element concerns the track contin-

uation of a list of link blocks, the 8-bit field OROFFSET

gives the offset of the label block (the address of an

item), and RELATION gives the name of the relation with

which the list of link blocks is associated. These fields

are followed by a 32-bit field LAST, which is a copy of

the last link in the list of link blocks in track X, and

by another 23-bit field INFOR2, which gives the position

of the continuation block in track Y.

If the data in an element concerns the continuation

of a list of label blocks, the position of the first label

block (the address of an item) in a list of label blocks

is identified by the 8-bit field OROFFSET, and LAST0FFSET

contains the name of the last relation on the list in track

X. The location of the continuation block in track Y is

given by the 23-bit field named INFOR2. RELATION, MEASURE

and LASTTKA have the value zero.

Each directory track contains information concern-

ing the unused space in the track. A pointer AVLPOINTER

gives the position of the first available block in the

track and a counter AVLCOUNT gives the number of available

blocks. Each directory track has a continuation poi-iter

CONTINUE which gives the position of a block in another

directory track to which the track continues. The use of

this continuation pointer will be described later.

54
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Figure 2 illustrates how the continuation informa-

tion is stored in the directory when a list of label blocks,

and a list of link blocks in track 100 have continuation

blocks in track 9.

Figure 2(a), the R's stand for relation names, M's

for measures, T's for track numbers, F's for offsets and

'*' is a special marker which indicates that a block has

continuations in another track. Notice that the links in

a list of link blocks are arranged in descending order

according to 31-bit internal values consisting of the

measure, the track number, and the offset fields that

represent a link. The links in a list of label blocks are

ordered according to the internal representation of rela-

tion names (7-bit values).

The following will illustrate the use of the direc--

tory. Let us suppose that an item represented by TIOO+Fl*

is to be connected to the item represented by T25+F3

through relation R45. Assuming that the item T25+F3 has

measure M9, we want to insert a link M9+T25+F3 in a list

of link blocks that starts at the position TI00+Fl with

relation name R45. We first check the entry in the direc-

tory for track number 100 to determine whether &ny contin-

uation information concerning the item TI00+Fl and the

'+' sign is used here to represent concatenation.
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Fig.2-An example of lists on more than one track
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relation R45 have previously been storpd. In our example

we would find the first element shown in Figure 2(b).

Since, as specified in this element, the last link of the

list of blocks in track 100 is MIO+T9+F3, whose internal

representation is greater than the link M9+T25+F3,

M9+T25+F3 should be stored iP the continuation block which

is in T9+FlOl. This information allows the system to

access track 9 without reading track 100 into core storage.

Thus, to store or retrieve a link in a list of blocks, we

can obtain the proper track from disk by referring to the

directory without having to trace the list through many

tracks. The directory allows the system to go directly

to the relevant portion of the file and eliminates unneces-

sary disk accesses.
The track continuation directory may itself occupy

several tracks. Its size would depend on the number of

lists oi label or link blocks in data tracks that have

continuation blocks in other tracks. Some heuristics may

be applied to help control the size of the directory. For

example, we may allow a continuation block to go onto a

data track only if the track contains a certain minimum

amount of space, so that data on the new track would not

shortly be increased and need again be extended to a

different track. Or we may reduce the inter-track continu-

ations by consolidating the continuation blocks into a

minimal number of tracks as space becomes available to do
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so. Both of these strategies would reduce the amount of

continuation information to be entered into the directory.

If the size of the directory is small, it will be

kept in core storage. Nevertheless, as the data in the .

file continues to grow, the size of the directory may

exceed the space that the system can spare. Part of the

directory may have to be stored on a disk. If we allow

portions of the continuation information of a data track

to spread over several directory tracks (which may at

times be on disk), we may have to do several disk accesses

just to find a piece of track continuation information.

This would completely destroy the advantage of the direct-

ory. We therefore move blocks from one directory track to

another if necessary to keep all the co:.tinuation informa-

tion associated with each data track ii the same directory

track. Thus, we can obtain the continuation information

of a data track by one disk access at the most if the

directory track happens to be on a disk at the time when

it is needed. We must also countenance occasional complete

reorganizations of the file, copying it onto an entirely

new set of tracks and reducing to an absolute minimum the

number of continuations from one track to another.

A directory track is generally large enough to h6ld

the continuation information for any data track. A direct-

ory track will need a continuation track only in the unusual

case where a data track contains a large number of label
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blocks having labels whose associated multiple links are

stored in other tracks. A continuation pointer CONTINUE

is provided for each directory track to specify the loca-

tion where the track continues. However, the need for a

continuation track for a directory track is not likely to

occur since the method of entering data into a track

provides for keeping label blocks and link blocks within

a track in proper proportion.

2.3. Resident Data Tables

In the preceding sections we have described the

structures and the use of both data and directory tracks.

The data tracks are normally stored on disk and are brought

into core storage when data on the tracks are to be used

or modified. The directory tracks, just as data tracks,

can be moved in and out of core storage. However, as a

general policy, we keep as many directory tracks in core

as possible. In order for the system to access tracks

efficiently, some general information concerning the con-

tent of the tracks on disk and also of the tracks brought

into core storage nceds to be kept in core by the system.

In this section, we shall describe this information (the

data tables) which is to be kept in core for ready refer-

ence, and the scheme used to maintain the tracks brought

into core storage.
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2.3.1. The Master Index. For each data track that

contains label or link blocks which have continuation

blocks in other tracks there will, as we have seen, be

lists of fixed-length blocks in a directory track which

contain the information concerning all the continuations.

The location of the head blocks and the lengths of these

lists are stored in the master index table as shown in'

Figure 3. The track number of a data track is used as an

index to specify the position at which the information is

stored. The index of the table starts from zero because

tracks in the file are numbered beginning with zero. N is

the number of tracks used in the system.

TK# FLAG DIRECTORY TRACK OFFSET LENGTH TYPE

0

2

I NEWGLAG C0NTK# CONTK0F LENGTH TKTYPE

FN--

Fig. 3 -- The Master Index
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The fields CONTK# and CONTKOF specify the head block of a

list in a directory t-rack which contains the track contin-

uation information of a data track. The length of the

list (LENGTH) is used to determine which list of blocks is

to be moved to other directory tracks in order to keep all

continuation information for a given data track, as far as

possible, in a same directory track. The shortest list

will be moved first when the moving operation is required.

The 1-bit flag (NEWFLAG) specifies whether a new item or

a continuation block can be established in the associated

data track. When the available space in a data track is

below a threshold predetermined by the system, this bit

is set to zero and no new item or continuation block will

be established in the track. The 1-bit field TKTYPE

specifies whether the associated track is a data track or

a directory track. For directory tracks and for data

tracks which do not contain any items that have continua-

tion blocks in other tracks, the associated fields CONTKOF

and LENGTH on the table will be set to zero and CONTK#

will be set to (15)'I'B.

2.3.2 The Resident-Track Directory. We shall now

describe the scheme employed in the system to manage the

tracks which are at times brought into core storage.

First let us consider the space in core which is to be

reserved as working space for manipulating data in the

file. The working area is large enough for M tracks,
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where M is a system parameter whose value will be determined

on the basis of the core storage remaining after space for

programs in the system has been allocated. During the

process of data manipulation, data tracks and directory

tracks will be moved in or out of this working space.

When a data track or a directory track is to be brought

into core from disk and no space in the working area is

available, a track in the working area must either be

moved out to disk or erased to make room for the incoming

track. To maintain some kind of priority among the tracks

currently in the working space, a queue is established on

the basis of how recently the tracks have been used.. When

a track is used, it is positioned at the head of the queue.

A track at the tail of the queue will be removed or erased

when space in the working area is needed.

The system will maintain a table shown in Figure 4(a)

to specify the tracks that are currently in core and show

whether the data in the tracks has been modified. When the

content of a track has been changed (i.e., data inserted or

deleted), the status flag will be set accordingly. The

track can then either be written out onto disk or simply

erased in order to make room for another track. The

example in Figure 4(a) shows that tracks 2, 5, 4 and 15

are currently in core and the data in tracks 2 and 4 have

been modified.



-26--

TRACKIS IN CORE STATUS QUEUE

I TKA 2 1 1 3

2 TK 5 0 2 7

3 TK4 4 1 3 5

4 TK4 15 0

• M-K+1

M M

(a) (b)

Fig. 4- The Resident-Track Directory

Figure 4(b) shows a queue which is an array of pointers.

The pointers specify the positions in the table (Figure

4(a)) at which the track number and status are stored. In

the above example, 3 is on top of the queue. It specifies

the position of track number 4 in Figure 4(a). Thus,

track number 4 has been used most recently. Whenever a

data track or a directory track is used, the system re-

arranges the pointers in the queue to maintain proper

priority among the tracks in the working space.

Since the same working space is used for both (lata

tracks and directory tracks, it may contain any numbe: of

these two types of tracks at a given time. As new t,'acks
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are brought into the working space, old tracks, generally

from the bottom of the queue, must be either written out

or erased. Whenever possible, data tracks are released

from core before directory tracks for the following reason:

Since the system first refers to directory tracks in order

to determine which dpta tracks contain the relevant data,

it is advantageous to retain as many directory tracks as

rnossible in core. As described in the preceding section.

the information in directory tracks allows the system to

go directly to the relevant portion of the data in the

file. If the size of the directory is small, all the dir-

ectory tracks will be kept in core for continuous reference;

otherwise, they will be moved in and out of the working

space. In order to assign to directory tracks a higher

priority for rýmaining in core than data tracks, we intro-

duce another system parameter, k, where l<k<M as shown in

Figure 4(b). When a track is to be moved out from the

working space to make room for an incoming track, the k

pointers at the bottom of the queue are searched (bottom

up). A data track, specified by a pointer, rather than a

directory tra -k, will be moved out to disk or erased,

regardless of the incoming track type. A directory track

is to be removed from the working space only when none of

the k pointers at the bottom of the queue specifies a data

track.
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2.4. Core Lists

In order to provide for temporary lists which will

be used by various procedures and then discarded, there is

an in core list processing system which will, nevertheless,

allow a list in core to have a list on disk as a sublist.

The declaration for the core list space is:

DCL 1 LSTSPCE EXTERNAL,

2 HEAD(2) BIT(15),

2 TAIL(2) BIT(15),

2 ELT(20000) CHAR(6);

HEAD(l) and TAIL(l) point to the beginning and end respec-

tively of the available space list of single elements,

while HEAD(2) and TAIL(2) point to the available space

list of double elements. Single and double elements are

distinguishable by the contents of an ID field (see below).

Initially all the available elements are tied together

into the available space list of double elements. The

si",script of the ELT array, which identifies the location

of a single element or of the first element of a double

element, will hereafter be referred to as the index of that

single or double element. A double elerient will always

consist of two consecutive members of the ELT array.

Every list element contains a 2 bit ID field with

the following values:

'OO'B - a single element which contains data.
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'01'B - a single element which contains the index

of a core list header or the address of a disk list.

'10'B - a double element which contains the indices

of the first and last elements of a core list and the

length of that list.

'll'B - a double element which serves as a reader

of a core or disi list.

These elements are referred to as a data element, a list

name, a header and a reader respectively.

2.4.1. Data Elements. The declaration of a data

element is:

DCL 1 ELEM BASED(P),

2 ID BIT(2),

2 NEXT BIT(15),

2 DATA BIT(31);

The NEXT field contains the index of the next element in

the same core list as the element itself. This field

contains all zeroes for the last element in a list.

When a data eL.ment contains the internal name of

an item, the DATA fle.d is structured as follows:

2 MEASUZE BIT(8),

2 TRACK BIT(15),

2 OFFSET BIT(8),

If the offset is all zeroes, the item is in the core file,

otherwise it is in the disk file.
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2.4.2. List Names. A list name has the following

structure:

DCL 1 LSTNME BASED(PN),

2 LID BIT(2),

2 LNEXT BIT(15),

2 LHDR BIT(15),

2 LOFFSET BIT(8),

2 LABEL BIT(8);

When this element is the name of a core list, LHDR contains

the index of the header of the list and LOFFSET and LABEL

contain all zeroes. When it is the name of a disk list,

LHDR and LOFFSET contain the track and offset respectively

of the item from which the list starts, and LABEL contains

the label which identifies the pointer list.

2.4.3. Header. A header has the following structure:

DCL 1 HEADER BASED(PH),

2 HID BIT(2),

2 FIRST BIT(15),

2 LAST BIT(15),

2 LENGTH BIT (15),

2 MARK BIT(l);

FIRST contains the index of the first element of the list

or zeroes if the list is empty. LAST contains the index

of the last element of the list or the index of the header

itself if the list is empty. LENGTH contains the length
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of the list. MARK is used in the internal operation of

some of the procedures.

2.4.4. Readers. A reader functions like a pointer

or bookmark. A reader is always associated with a list

and is, at any given moment, pointing at one of the ele-

ments of that list. Readers can be created and destroyed

at will and are associated in the act of creation with the

list they will be used to read. Any number of readers can

be associated with a given list and the lists can be either

on disk or in core. Furthermore, lists of readers can be

created and other readers associated with these lists.

The system provides procedures for creating new readers

and also for causing an existing reader to point to a new

element of its list. A particular case of this latter

operation, known as incrementing the reader, causes it to

point to the next element following t1- one it currently

points to.

The structure of a reader is:

I READER BASED (Q),

2 RID BIT(2),

2 RNEXT BIT(15),

2 TYPE BIT(l),

2 RDATA BIT(78);

TYPE is 'O'B if the reader is reading a core list and 'lB'

if it is reading a list on disk. RDATA has a slightly

different internal structure depending on whether the list
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being read is in core or on disk. In the former case, it

contains the addresses of the current element and the one

just preceding it on the list; in the latter case, the

pointer to the preceding element is replaced by a pointer

to the entry in the track-continuation directory showing

the further tracks, if any, on which the list is continued.
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3. ACCFSS PROCEDURES

This section describes a set of programs-procedures

written in the PL/l programming language-that facilitate

the construction of other programs using a file with the

kind of structure described in the preceding sections.

These procedures can be thought of as extensions of the

PL/l programming language itself. They carry out operations

which, though sometimes complex, can most conveniently be

viewed as elementary by the writer of a larger program.

Thus, for example, the srmantic component of the MIND system

uses these procedures rather than manipulating the semantic

file directly. The writcr of this program was thereby

relieved of the necessity of managing continuation tracks,

priority lists and the like. His job was simplified, the

resulting program was more perspicuous, and a situation was

produced in which details of the file structure can be

changed without redesigning the main semantic program.

Thiere are eight principal operations made available

to the programmer through these procedures. They enable

him to

(1) Establish a new label block in the file,

(2) Locate the item or items standing in a specified-...

relation to a given item,

(3) Establish a relation between a pair of items,

(4) Create a reader,

(5) Move a readcr so that it points to a new item,
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(6) Get the data associated with a reader.,

(7) Verify if a specified relation is associated
with a given item,

(8) Terminate operations on the file, returning
all information in core to disk storage.

These procedures are described in subsection 3.1 below.

Some of the procedures are fairly complex and sorie of the

work that is done in one must also be done in others. It

has therefore proved profitable to create some yet more

elementary procedures for use in constructing these. The

writer of a high-level program, say a semantic component

for the MIND system, is not expected to require direct

access to these procedures except on rare occasions.

However, no cost attaches to making them available to him

and they are therefore Cescribed; those used to manipulate

material on data tracks are listed in subsection 3.2 and

those that affect directory tracks in subsection 3.3.

3.1. Storage and Retrieval Procedures

This section describes eight procedures used in the

semantic component of the MIND system for the storage and

retrieval of information in the semantic file.

3.1.1. NEWITEM BIT(23). This function establishes

a new label block in the file and returns its location as

the value of the function. The first 15 bits of the value

returned gives the number of the track where the new block

is situated and the remaining 8 bits give the index of the

entry in the label directory of that track where its actual
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location (offset) on the track is stored. Space for the

new block is sought (1) in a data track currently residing

in the core store of the computer; if no such space is

available, then (2) in some other track that forms part of

the current semantic file; if this fails, then (3) in a

new track which is now incorporated into the file for the

first time.

3.1.2. RELFOL(RLaITEMANS) BIT(l): The declarations

of the parameters are as follows:

DCL RL BIT(7),

1 ITEM,

2 ITEM TRACK BIT(15),

2 ITEMBLOCK# BIT(8),

1 ANS,

2 ANS TRACK BIT(15),

2 ANS BLOCK# BIT(8),

2 ANS INDEX BIT(8);

ITEM gives the address of a label block a and RL the name

of a relation R. If R is a singular relation, then the

function attempts to locate another label block b such that

a R b holds. If such a label block exists in the file,

then ANS will contain, on return, the address of that block.

ANS INDEX will contain the value 0. If R is a multiple

relation, they' the function attempts to locate the list of

link blocks each of whose entries contains the address of

a label block b such that a R b holds. If such a list
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L Fig.5--The RELFOL Procedure
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exists, then ANS will contain, on return, the address of

the label-block entry that contains the address of that

list. In either case, the value of the function is '1'B

if a suitable block is found in the file, and 'O'B otherwise.

Consider the examples depicted in Fig. 5. If ITEM

has the value T20+23 and the relation R is singular, then

the value of the function will be '1'B and ANS will have

the value T30+19+0. If ITEM has the value T21+7, the

relation S is multiple, and the list of label blocks headed

by the one at T21+7 has an entry for S in the 4th position

of the block at T21+17, then the function will have the

value 'I'B and ANS will contain T21+1744.

3.1.3. CONNECT (LITEMRLRITEM). The declarations

of the parameters are as follows:

DCL I LITEM,

2 LITEM TRACK BIT(15),

2 LITEMBLOCK# BIT(8),

I RL,

2 RL NAME BIT(7),

2 RL MULT BIT(l),

1 RITEM,

2 RITEM _MASURE BIT(8),

2 RITEM TRACK BIT(15),

2 RITEMBLOCK# BIT(8);

RL specifies a relation which the CONNECT procedure will

establish between the i ;ems named in LITEM and RITEM
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respectively. In other words, if LITEM contains the address

of a label block 1, RITEM the address of a label block r

and RL the name of a relation R, then CONNECT will put the

proposition 1 R r into the file.

3.1.4. SETRDR(LD) BIT(15) The declarations of the

parameters are as follows:

DCL 1 L,

2 L TRACK BIT(15),

2 LBLOCK# BIT(8),

2 L INDEX BIT(8),

1 D BIT(31);

SETRDR creates a new reade, (see 2.4.4) and returns, as the

value of the function, a L--bit string called a reader

index * which characterizes it and which will be used to

identify it to other procedures. L specifies the list to

be read, that is, the list with which the new reader is to

be associated. D is either all zero or contains a reference

to a label block in the form typically stored in a link block.

block in the form typically stored in a link block. If

If L BLOCK# and L INDEX are zero, then L TRACK will be taken

-*A reader index is, in fact, an unsigned integer
which is used to index an external array called ELT. If
i is a reader index, then ELT(i) is the address of the
associated reader.
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as the address of a list in core; otherwise L will be

understood as the address of an entry in a label block

containing the name of a multiple relation and, therefore,

the address of a list of link blocks. In any case, L

specifies the list with which the reader is to be associa-

ted. D is either all zero, o01: it corstains a so-called

data item. If D is zero, then the reader will be estab-

lished pointing to the first item on the list referred to

by L; otherwise the reader will point to the first entry

on the list with a data value less than or equal to D.

Typically, readers will be used to scan lists of

link blocks. Recall that these contain references to label

blocks stored in descending order. A reference to a label

block consists, for these purposes, of an 8-bit measure,

a 15-bit track number and an 8-bit offset concatenated

together. D will normally contain such a 31-bit quantity.

If D contains a quantity less than any on the list,

so that the reader cannot be set up as directed, then no

reader is created and zero is returned as the value of the

function.

3.1.5. INCRDR(RD) BIT(l) The declarations of the

parameters are as follows:

DCL R BIT(15),

D BIT(31);

R is a reader index ane D is. a data item (see 3.1.4).

INCRDR is used to cause the reader identified by R to
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point to a new entry on its associated list. If D is

zero, then the new entry will be the one immediately

following the current one. Otherwise the reader is moved

down the list until an entry is encountered with a data

value less than or equal to D. If such an entry is found,

then the reader is left pointing to that item; otherwise

the RTHIS field of the reader is set to zero, the RLAST

field points to the last entry on the list, and 'O'B is

returned as the value of the function. If the reader does

not run off the end of the list and is left pointing at an

entry, then the value of the function will be '1'B.

3.1.6. RDRDATA(RINDEX) BIT(31) The declaration of

the parameter is as follows:

DCL RINDEX BIT(15);

RDRDATA returns the datum of the element specified

by the first pointer of a reader. In the case vhere the

reader is associated with a list of link blocks, this

datum will be a 31-bit string consisting of an 8-bit mea-

sure followed by a 15-bit track number and an 8-bit offset.

RINDEX is the reader index.

3.1.7. LOCRL (ITEMRL) BIT(l) The declarations

of the parameters are as follows:

DCL I ITEM,

2 TK# BIT(15),

2 OF BIT(8),
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1 RL,

2 NAME BIT(7),

2 MUL BIT(l);

This function searches for a relation name RL in a label

block or a list of label blocks represen:ing the item ITEM.

If the relation name is found, 'I'B is returned.' Other-

wise, 'O'B is returned.

3.1.8. QUIT This procedure does the final book-

keeping before the system terminates its operation on the

semantic file. It stores away the system variables and

dumps those tracks in core, whose contents have been

modified, to the data set on disc.

3.2. Data-Track Procedures

The procedures to be described below carry out the

following operations: (1) locate an item which enters

into a given telation with another item in a data track

or locate a relation name associated with a given item,

(2) store an item or a relation name in the file, and (3)

rearrange the elements in a list of link or label !locks

to keep them in the proper order.
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3.2.1. LOCATE (LINKAD2 ,RELATION, ITEM2 ,OFFLIST,

MULTFLAG,IPTPOS) BIT(l; The declarations of the parameters

are as follows:

DCL I LINKAD2,

2 TKA BIT(15),

2 OFST BIT(8),

I RELATION,

2 LBNAME BIT(7),

2 MUL BIT(1),

I ITEM2,

2 ITK4 BIT(15),

2 I0ST BIT(8),

OFFLIST BIT(l),

MULTFLAG BIT(l),

1 PTPOS,

2 PTK# BIT(15),

2 POFST BIT(8),

2 PINDEX BIT(8);

This function locates an item or a relation name in

a segment of link (or label) blocks and returns '1'B if

the item or a relation name is in the segment and 'O'B

otherwise. A list of link (or label) blocks may be broken

up into several segments which reside on different tracks.

Tha elements in the list arc: arranged in descending order

according to the internal values of items or relation

names. LOCATE is a basic routine which does the following
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things depending on the values passed to the parameters.

(1) If LINKAD2 has a non-zero value, it specifies

the item which is to be located in a segment of link blocks.

The segment can be the first segment of the list which

contains the label block (ITEM2) or in a segment in a con-

tinuation track. In the former case, MULTFLAG has value

'O'B and the head of the segment is identified by PTPOS

which specifies the position of the relation name (RELATION)

in the list of label blocks representing the item ITEM2.

In the latter case, MULTFLAG has value 'I'B and the first

block of the segment is identified by ITEM2. If the item

is found in the specified segment, the structure PTPOS

would contain its location. Otherwise, PTP0S contains the

location of an item which would have succeeded the item to

be located if it were in the list. PTK# and POFST in

structure PTPOS specify the block in which the item is

stored and PINDEX specifies its position in the block. If

the internal representation of the item to be located is

smaller than the last item in the given segment, the flag

OFFLIST is set and PTPOS contains the location of the last

item. MULTFLAG is set to 'O'B if the segment contains only

one item and 'I'B otherwise.

(2) If LINKAD2 is zero, this procedure locates the

relation name specified by input parameter RELATION in a

segment of label blocks whose head block is specificd by

ITEM2. Upon returning to the calling routine, PTPOS
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specifies the location of the relation name if it is found

in the segment. Otherwise, PTPOS specifies the location

of the next relation name, i.e. the one whose internal

representation is smaller than that of the one to be loca-

ted. If the internal representation of the relation name

is smaller than that of the last one in the segment, the

flag OFFLIST is set and PTP0S contains the location of the

last relation name.

The search method employed in this program is a

combination of so-called 'bucket search' and 'binary search'.

The program first determines the block in which the item

(or the relation name) should be stored by checking the

item (or the relation name) against the last element of each

block in the segment. Then a binary search is employed to

locate the item (or the relation name) in the block.

3.2.2. STLINK(PTPOSITEMADIABELLISTADMULFLAG,

OFFLIST) The declarations of the parameters are as follows:

DCL 1 PTPOS,

2 PTK#

2 POFST BIT(8),

2 PINDEX BIT(8),

1 ITEMAD,

2 DUMMY BIT(l),

2 MEASURE BIT(8),

2 LINKAD,
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3 TK# BIT(15),

3 IOFST BIT(8),

1 LABEL,

2 NAME BIT(7),

2 MULT BIT(l),

1 LISTAD,

2 LTK# BIT(15),

2 HEAD,

3 LOFST BIT(8),

3 RN BIT(7),

2 MUL BIT(l),

(MULFLAG, OFFLIST) BIT(1);

This procedure stores an element (an item or a relation

name plus an item) at a given location in a list of link

(or label) blocks and, when necessary, rearranges the

elements in the list of blocks to keep them in the proper

order. If the parameter LABEL.NAME is zero, the procedure

stores the item represented by ITEMAD at the location

specified by PTPOS. Otherwise, the procedure stores (1)

a relation name specified by the structure LABEL and (2)

a single item specified by the structure ITEMAD at the

position specified by the structure PTPOS. Values for

the parameter PTPOS will normally have been obtained by

calling the LOCATE routine (See 3.2.1).
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If OFFLIST has the value 'i'B, then the new item is to be

stored on the end of the list, the address of whose last

element is contained in PTPOS. Otherwise, PTPOS specifies

the position in the list where the new element is to be

stored. Notice that this position may currently contain

some other element which will have to be moved to accom-

modate the new one. If NAME is zero, then ITEMAD contains

a link to be stored at PTPOS, which will refer to a loca-

tion in a link block. If NAME is non-zero, then LABEL will

be taken to be the name of a relation and ITEMAD will refer

to an item, or items, that stand in this relation to the

item in one of whose label blokks the new entry is to be

made. In this case, the 40 bits obtained by concatenating

LABEL with ITEMAD is to be stored at the position referred

to by PTPOS, which will be in a label block. When necessary,

the procedure reorders the elements in the list of link (or

label) blocks. This may involve creating a new block and

inserting it in the list, extending an old block, moving

elements up or down the list to make room for the new

element, activating the garbage collector to obtain space

for a new block, or may cause an element already in the

list of blocks to be moved to another track in order to

make room for the new element. This last situation would

require updating the track-continuation directory and

storing the element removed from the track in another track.
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3.2.3. ADDLINK(PTPOS1 ITEMADJLABELI-REMAINDEROFFLIST)

The declarations of the parameters are as follows:

DCL 1 PTPOS,

2 PTK#, BIT(15),

2 POFST BIT(8),

2 PINDEX BIT(8),

1 ITEMAD,

2 DUMMY BIT(l),

2 MEASURE BIT (8),

2 LINKAD,

3 ITK# BIT(15),

3 IOFST BIT(8),

I LABEL,

2 NAME BIT(7),

2 MULT BIT(l),

1 REMAINDER,

2 LASTLK BIT(40),

2 REMAIN BIT(40),

OFFLIST BIT(l);

This procedure is used mainly by the STLINK procedure. Its

purpose is to store an element specified by ITEMAD, or

LABEL concatenated with ITEMAD, at the position specified

by PTPOS in a list of link or label blocka. If the one-

bit OFFLIST is set, the element is to be added to the end

of the list. If the addition of an element in the list

causes another element to be extended to another track,
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then this procedure returns two elements specified in the

structure REMAINDER. REMAIN specifies the element to be

stored in another track. LASTLK is the last element in

the current list. These two elements must be used to up-

date the track continuation directory.

3.2.4. PRE.BK(BEGIN,ENDTYPETPOINTERSIZE) BIT(l)

The declarations of the parameters are as follows:

DCL (BEGINEND) BIN FIXED(15),

TYPE BIT(l),

SIZE BIN FIXED(8),

TP0INTER POINTER;

This function searches a list of link or label blocks,

from the block specified by BEGIN to the block specified

by END, for an unused space, and moves all the elements

following it up by one space. If TYPE = '1'B, then the

space is required in a label, otherwise in a link block.

The purpose of this procedure is to create space in a

block which is at present full for a new item. To do this,

an attempt is first made to find some unused space in a

block which precedes this one in the list, and on the same

track, and then to move the items in intervening positions

up so as te fill this space and to leave space available

in the desired block. Thus, BEGIN would index the first

block of the list that is on the current track and END

would index the block in which it was desired to create
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space. The value of the function is '1'B if the search

for unused space is successful, and 'O'B otherwise. If

the search is successful, then TPOINTER contains the

address of the newly created segment of unused space, and

SIZE gives the number of items that it will accommodate.

This procedure is used mainly by the FORWARD procedure and

the garbage-collection routine.

3.2.5. FORWARD(BEGINENDITEMADOFFLI ST) BIT(l)

The declarations of the parameters are as follows:

DCL (BEGIN,END) BIN FIXED(15),

1 ITEMAD,

2 DUMMY BIT(l),

2 MEASURE BIT(8),

2 LINKAD,

3 ITKL BIT(15),

3 IOFST BIT(8),

OFFLIST BIT(l);

This function searches a list of link or label

blocks, from the block specified by BEGIN to the block

specified by END, for an unusei space, moves up all the

elements following the unused space found in the list,

and stores the new element specified by ITEMAD in the

space just vacated. If OFFLIST is set, the new element

is added at the position following the last element on

the list. This function returns 'I'B, if it succeeds in
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finding an unused space in the list, and 'O'B otherwise.

"This function makes use of the PRE BK function.

3.2.6. POST BK(BEGINENDITEMAD7) BIT(l)

The declarations of the parameters are as follows:

DCL (BEGINEND)BIN FIXED(15),

1 ITEMAD7,

2 DUKMY BIT(I),

2 MEASURE BIT(8),

2 LINKAD,

3 ITK5 BIT(15),

3 IOFST BIT(8);

This function searches a list of link or label blocks,

from the block specified by BEGIN to the block specified

by END, for an unused space and moves down all the elements

preceding it by one space, and stores a new element at the

space vacated. This function returns '1'B, if an unused

space is found and returns 'O'B otherwise. Typically,

this function is used to obtain space only when an attempt

to do so using FORWARD has failed.

3.2.7. UP(MCSTARTMC) The declarations of the

parameters are as follows:

DCL (MCSTARTMC) BIN FIXED(8);

This procedure moves the elements of a block up by one

space. MCSTART and MC specify the first and the last

elements in the block that are to be moved.
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3.2.8. DOWN(BTATOPINCTEMP) The declarations of

the parameters are as follows:

DCL (BTTOP,INC) BIN FIXED(8),

TEMP POINTER;

This procedure moves the elements of a block (label or

link) down by the number of spaces specified by INC. TOP

and BT specify the first and the last elements in the

block that are to be moved. TEMP is the.pointer of a

based variable overlaid on the block.

3.2.9. GETRACK(TRACKNO) The declaration of the

parameter is as follows:

DCL TRACKNO BIT(15);

This procedure checks if the track specified by TRACKNO is

in core. If the track is not already in core storage, it

reads the track from disk. This may involve writing a

track in core out to disk to make room for the track to be

brought in. After the track is located in core, the pro-

gram assigns its core address to the external pointer

variable QTK if a data track is involved, and to the

external pointer variable R if a directory track, and, if

the track is a new one brought into service for the first

time, initializes the structure.

3.2.10. OUTRACT This procedure is used only for

debugging purposes. It prints the contents of the track

which is currently in core and whose address is the value

of the external pointer variable QTK.
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3.2.11 STORE(MCOUNTI.TEMAD) The declarations of

the parameters are as follows:

DCL MCOUNT BINARY FIXED (8),

1 ITEMAD,

2 DUMMY BIT(l),

2 MEASURE BIT(8),

2 LINKAD,

3 LTRACK BIT(15),

3 L BLOCK# BIT (8);

The procedure also refers to the following external variables:

DCL QTK POINTER EXTERNAL,

LB7 BIT(7) EXTERNAL,

1 TKSTATE(5) EXTERNAL,

2 TTRACK BIT (15),

2 STATUS BIT(l),

QUEUE(5) BINARY FIXED EXTERNAL;

This procedure stores a label or link element in a track.

If LB7 has the value zero, then ITEMAD is a link item;

otherwise LB7 is the name of a relation and a label item

is stored. The positl. in the track at which the new

item is to be stored is given by MCOUNT. QTK contains the-........

address of the track in which the item is to be stored.

TKSTATE and QUEUE each contains an entry for each track

currently in core; T_TRACK gives the numbers of these

tracks (i.e. their addresses on disk) and STATUS contains

'1'B or 'O'B depending 6n whether the corresponding track
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has or has not been modified since it was last replaced

on disk. QUEUE contains indices in TKSTATE and is used

to order the tracks in core according to how recently they

were last referred to. Thus, TTRACK(QUEUE(I)) is the

number of the track most recently referred to, and

T TRACK(QUEUE(5)) is the number of the track that was re-

ferred to longest ago. When the STORE procedure is called,

QTK is assumed to contain the address of the track most

recently referred to, that is, the oTIC corresponding to

TKSTATE(QUEUE(1)). The procedure sets STATUS(QUEUE(l))

'1'B to show that the track has now been iuodified.

3.'.12. AVL(LASTPLOCTYPE, FIRSTPLOC) The declara-

tions of the parameters are as follows:

DCL (LASTPLOC,FIRSTPLOC)BIT(13),

TYPE BIT(I);

This procedure obtains space from the space available on

a data track either for forming a new link or label block

or for expanding an old link or label block. TYPE is set

to 'O'B or '1'B depending on whether the space is required

for a link or a label block.

This procedure is called when space is needed for

storing a new element in a list of link or label blocks.

As noted in the description of STLINK, there are two ways

to obtain the space. One is to expand the size of an ole

.block in which to store the new element. The other method

is to establish a new block and to link it to the existing
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blocks in the list. The program has to consider the cost

of expanding the size of an old block, which requirpq

reorranging some blocks in the track so that the space

consecutive to the old block can be made available. The

Pmount of labor involved in increasing the size of an

existing block depends on the numbcr of blocks intervening

between it and the available space. Thus, when AVL is

called, LASTPLOC contains the address of the last byte in

the old block. If the distance between the byte and the

first byte of the available space exceeds a predetermined

system parameter (currently set to 40 bytes), space for a

new block will be obtained. Otherwise, space will be

obtained for increasing the size of the zld block.

Upon returning to the calling program, TYPE is set

to '0' or 'I'B according as the space is for forming a new

block or for expanding an old block, and FIRSTPLOC is set

to point to the space obtained.
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3.3. Director--Track Procedures

The procedures to be described in this section carry

out the following operations on directory tracks:

(1) Search the track-continuation information

stored on directory tracks to determine the location in a

data track at which a relation name or an item is stored.

(2) Establish a new element in a directory track

when a list of link or label blocks in a data track is

extended to -nother data track, and

(3) Rearrange the information in directory tracks

to keep elements in proper order and to keep all continua-

tion information pertaining to a data track in the same

directory track.

3.3.1. SLTRACK(LINKADLISTAD, ITEMJPTPOS) BIT(I);

DCL 1 LINKAD,

2 DUMMY BIT(l),

2 MEASURE BIT(8),

2 IT,

3 TK# BIT(15),

3 0FST BIT(8),

I TJISTAD,

2 LTK# BIT(15),

2 HEAD,

3 LOFST BIT(8),

3 RN BIT (7),

2 MUL BIT(l),
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1 ITEM,

2 ITK& BIIT(l5),

2 IOFST BIT(8),

1 PTP0S,'
2 PTK# 131T(15),,

2 POFST 131T(8).,

2 PINDEX BIT(8);

This function searches a directory track to find the proper

segment of a list of[ iink or label blocks (specified in the

structure LISTAD9) which contains the link specified by

LINKAD or the relation name specified by LISTAD.R1N. In

the letter case, LINKAD is zero. If the list of blocks

does not have a continuation block in another track, this

function sets ITEM equal to the first block of the list

(a label block) and returns 'O'B. Otherwise, it sets ITEM

equal to the first block of the selected segment and PTPOS

equal to the address of the element in the directory track

which specifies the address of -the next- segment of the

list, and returns '1'B'.

3.3.2. LOCDRT(LISTAD,TEMPOF, _INDLASTLINK,,FALLOFF) BIT (l

DCL 1 LISTAD,

2 LTK# BIT(15).,

2 HEAD.,

3 LUFST BIT(8),

3 RN BIT(7)-,
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2 MUL BIT(l),

TEMPOF BIN FIXED (8),

IND BIN FIXED,

1 LASTLINK,

2 MEASURE BIT(9),

2 IT,

3 TK# BIT(15),

3 OFST BIT(8),

FALLOFF BIT(1);

This function locates a piece of track continuation infor-

mation in a list of fixed-length blocks in a directory track.

The address of this track is assumed to be the current value

of the external pointer variable R. The piece of informa-

tion concerns the track continuation of a list of link or

label blocks in a data track. The address of the list is

specified by LISTAD, and the last element in the list is

specified by LASTLINK. LISTAD and LASTLINK make up the

element to be sought. If the element is found in a list

of blocks in the directory track, then this function returns

'1'B. TEMPOF specifies the block containing the element and

IND specifies the position of the element in the block. If

the element is not found, 'O'B is returned, and TEMPOF and

IND are set to point to the first element which has a smaller

internal value than the one sought. If the internal value

of the element sought is smaller than the last element on

the list, FALLOFF is set to 'I'B and TEMPOF and IND specify

the location of the last element.
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3.3o 33 EXTENT (LISTAD,ITEMADITYPE.LASTLINK)

DCL I LISTAD,

2 LTK# BIT(15),

2 HEAD,

3 LOFST BIT(8),

3 RN 31T(7),

2 MUL BIT(l),

1 ITEMAD,

2 TK BIT(15),

2 OFFSET BIT(8),

TYPE BIT(l),

I LASTLINK,

2 DUMMY BIT(l),

2 MEASURE BIT(8),

2 ITM,

3 TK# BIT(15),

3 OFST BIT(8);

This procedure establishes a new continuation block or

finds an existing continuation block in a data track, and

updates the track continuation directory. The continuation

block is a link block or a label block depending as TYPE is

set to '1'B or 'O'B by the calling routine. It is used for

storing an element which is pushed out of a list of link or

label blocks in a data track. The address of such a list

is specified by LISTAD and the last element in the list is

given by LASTLINK. The information in LISTAD is used to
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locate the proper element in a directory track which con-

tainF the continuation information on the list. The content

of LASTLINK is used to update the continuation information.

Upon returning to the calling procedure, iTEMAD contains

the location of the block established or found.

If no continuation information related to the list

has previously been stored in a directory track, the list

specified by LISTAD is now extended to another track for

the first time. In Lhis case, a new element is to be

established in a directory track. This procedure calls

LOCDRT (see 3.3.2) to find the proper place to establish

the new element. This generally involves storing a new

element in a list of fixed-length blocks in a directory

track. Like storing a new element in a list of blocks in

a data track, the insertion of a new element in a directory

track often requires the rearrangement of the old elements

in the list to keep them in the proper order. The program

first looks for an unused space in the block located by

the procedure LOCDRT. If a space is found, the program

rearranges the elements in the block and inserts the new

element. If this fails, the program gets a new block from

the available space in the directory track and links the

new block to the other blocks in the list. The new element

will then be properly stored.

In the event that there is no space in the directory

track available for establishing a new block, the program

will make room by moving another list of blocks from the
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present directory track to another directcry track instead

of extending the current list to another track. This is

because we want to keep all the track continuation informa-

tion associated with a data track in the same directory

track. Generally, the shortest list will be moved out and

the blocks returned to the available space. In this ,y,

the new block can be established in the present directory

zrack.

3.3.4. SUCBK (BEGINEND) BIT(l)

DCL (BEGINEND) BIN FIXED(15),

(TEMP0F,IND) BIN FIXED EXT(15);

This function searches a list of fixed-length blocks in a

directory track, from the block specified by BEGIN to the

block specified by END, for an unused space and moves all

the elements preceding it down by one space. An empty

space will thus be cr.mated in the first block of the list.

Upon returning to the calling routine, TEMP0F specifies

the block containing the empty space arid IND specifies the

position of the empty space in that block. If the program

fails to find any u±,used space in the list, it returns

'O'B. Otherwise it returns '1'B.

3.3.5. PREVBK (BEGIN IEND) BIT(1)

DCL (BEGINEND) BIN FIXED (15),

(IND,TEMPOF) BIN FIXED EXT(15);
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This function searches a list of fixed-length blocks in a

directory track from the block specified by BEGIN to the

block specified by END, for an unused space and moves all

the elements following the unused space in the specified

portion of the list up by one space. Thus, an empty space

will be created at the end of the list. Upon returning to

the .alling routine, TEMPOF sperifies the position of the

block containing the empty space, and the position in the

block is of the space identified by IND. If the program

fails to find sny unused space in the list, it returns

'O'B. Otherwise it returns '1'B.

3.3.6. PUTCTK This procedure prints a directory

track whose address is the current value of the external

pointer variable R. It prints the content of all the

fixed-length blocks in the directory track except the

empty ones.

4. PROGRAM STRUCTURE

The following chart specifies the relations among

the procedures described in this report showing which

procedures make use of which others. An arrow in the-

chart indicates that a procedure calls another procedure

to which the arrow points.
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